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Squeezed state dynamics of kicked quantum systems
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We study kicked quantum systems by using the squeezed state approach. Taking the kicked quantum
harmonic oscillator as an example, we demonstrate that chaos in an underlying classical system can be
enhanced as well as suppressed by quantum fluctuations. Three different energy diffusions are observed in the
kicked quantum harmonic oscillator, namely, localization, linear diffusion, and quadratic diffusion.
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[. INTRODUCTION plying the squeezed state approach to a harmonic oscillator,
we can obtain not only the eigenenergies but also the eigen-
A squeezed state is a generalized coherent state, whidhnctions (including the ground stateexactly, as we shall
has a wide application in many branches of physics such asee in Appendix A, whereas the semiclassical method fails to
guantum optics, high energy physics, etc. Recent years hawgeld the exact eigenfunctions. As a further example of
witnessed a growing application of the squeezed state to th@any-body systems, we would like to mention that we have
field of nonlinear dynamics and cha¢$—12. Since the used the squeezed state approach to the one-dimensional
squeezed state approach is a kind of approximation of quarruantum Frenkel-Kontoroval modél3], which is a non-
tum mechanics, it is called aemiquantum approacbhy trivial many-body, nonintegrable system. Our results show
people in this community. The time evolution of expectationthat the squeezed state approach very nicely captures the
values and fluctuations of the squeezed state is thus nameghiure of the quantum effect, namely, the standard map
semiquantum dynamicer squeezed state dynamics _which, determining the coordinates of the classical ground
The main purpose of the squeezed state approach i Qate is renormalized to an effective sawtooth map in the

sf[udy hc_)w quantum fluctuanons mamfes_t themselves on Cla%juantum case. The squeezed state results agree well with that
sical trajectories. This approach starts directly from quantumue v o quantum Monte Carlo methd3]

systems with no reference to classical limit. In fact, it has In this paper. we would like to anply the squeezed state to
been showr5] that the squeezed state dynamics exits even, er?er?c Behaviors of kickegp ){Janturﬂ svstems. It is
for systems without a well-defined classical dynamics. Gen- y 9 . d Y '

ell known that, in the development of quantum chaos,

erally, the squeezed state approach simplifies the quantuﬁ

version, and provides a complementary way to the semicladickéd guantum systems play a very important role. Proto-
sical method. In some special cagesfortunately, we still YPes of these kicked systems are the kicked rotator and

do not know under what kind of conditionsit gives us kicked harmonic oscillato_fKHO). They represent two dif-
better results than the semiclassical metfioe5,7,9. There- fgrent classes of dynamical systems. On the one hand, the
fore, in addition to the semiclassical approach, the squeezeficked rotator obeys the Kolmogorov-Arnold-Mos@&AM )
state approach is also a very useful tool to study the promerﬂweorem. Classically, as the kick streng_th increases, invariant
of classical-quantum correspondence. curves gradually break up. When the kick strength exceeds a
The squeezed state approach has proven to be very syedtical value ofK,=0.97% . . ., thela;t invariant curve dis-
cessful in studying dynamical systems ranging from inte-2Ppears, and bounded chaos turns into global chaos, charac-
grable to many-body nonintegrable systems. Among man rized by unbounded ;hffusmn in _the momentum direction
others, we name just a few examples here. In calculating thel4]- Quantum mechanically, the diffusion follows the clas-
ground state energy for quantum system with potentiafical one only up to a certain time, after which it is com-
V(q) = —V,/cosRaq, Tsui[8] discovered that the ground pletely ;uppressed, thus leading to dynamical localization
state energy obtained by the squeezed state approach is mud®}- This phenomenon was connected to the Anderson lo-
closer to the exact ground state energy than that obtainetflization[16], and was confirmed experimentally7].
from the WKB method. More recently, Pattanayak and ©On the other hand, since a harmonlc oscillator is a degen-
Schieve[11] applied this approach to a classically chaoticerate system, the KHO model is out of the framework of the
system, for which the WKB method completely fails. They KAM theorem; that is, diffusion can occur along stochastic
have successfully calculated low-lying eigenenergies whici{vebs for any small kick strength. As a matter of fact, the
agree within a few percent with the pure quant(mmeri- KHO model is not a toy model; it stems from a real physical
cal) results. In addition to the ground state and/or lower ex-System. It describes a charged particle moving in a magnetic
cited state energies, the squeezed state approach can provitfdd and under the disturbance of a wave pak8t. It has
a way to obtain correct eigenfunctions. For instance, in apl; degrees of freedom. Classically, it depends on the ratio
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between frequency of the harmonic oscillgtor and that of the + 504 4 are boson creation and annihilation operators
external kickgdsee Eq(34)]. This system displays abundant
structures in phase space such as crystal, quasicrystal, a
stochastic web§18,19. Moreover, since the phase space of
the KHO is unbounded and cannot be reduced to a cyIindeP{
as in the case of the kicked rotator model, numerical inves-
tigation of the quantum KHO is much more difficult than
that of the kicked rotator model. Therefore, contrary to the |a)=D(a)|0). (3)
kicked rotator, only a few attempts have been made in the
quantum KH([20-24. A general picture about the quantum | terms of the number eigenstdt®, the coherent state can
behavior of the KHO is still lacking. be written as

In this paper, using the squeezed state approach, we are
able to obtain the diffusion behavior of the quantum KHO
model not only numerically but also analytically. The paper @
is organized as follows. In Sec. Il, we give a brief introduc- |a>=ex;{ _ E|a|2) E
tion of the squeezed state approach for purposes of self- 2 A=0 \/n!
containment. In Sec. lll, by using the KHO model, we shall
demonstrate that quantum fluctuations will enhance chaos @t js eigenvalue of creation operator, i.e.,
a small perturbation regime, whereas it will suppress chaotic
diffusion at a large perturbation regime. In Sec. IV, we shall
study the diffusion and localization phenomena. In Sec. V,
comparisons between the squeezed state results and the verg .
few available quantum results will be given. We shall con-2€"n0ting
clude our paper with discussions and remarks in Sec. VI. In .
Appendix A, we apply this approach to quantize the har- a=|ale'”, (6)
monic oscillator, which exactly yields eigenenergies and
eigenfunctions. In Appendix B, we outline our procedure ofand taking the integral over anghe from 0 to 27 on both
the pure quantum computation for KHO in some specialsides of Eq.(4), we obtain the number eigenstate expressed
cases. in terms of the coherent state,

jhich satisfy the canonical commutation relatipa,a* ]
=1. The coherent state is just operatbr acting on the
acuum staté0),

an

[n). (4

ala)=a|a). (5)

1 1 2m .
Il. SQUEEZED STATE APPROACH |n>: zexF{ElaF) |a|7n\/mfo d7797'm7| a>. @

The squeezed state approach starts from the time-

dependent variational principl@DVP) formulation _ i
The coordinate and momentum operators are defined as

Jd .
5J dy(W(t)liti— —H|W(1))=0. (1) : _\/%(é+ )
= — —
2 i)

Variation with respect t¢W (t)| and| W (t)) gives rise to the
Schralinger equation, and its complex conjugasee, e.g., . o
Ref. [25]), respectively. The true solution may be approxi- q= \/;(a++a).
mated by restricting the choice of states to a subspace of the
full Hilbert space, and finding the path along which the . .
above equation is satisfied within this subspace. In thd NUS We have expectation values and variances
squeezed state approach, the squeezed coherent state is cho- -
sen as|W¥(t)). In this manner, as we shall see below, in _ A . \[ %
additior|1 to th>e dynamics of centroid of wave packet, we will P=(Y(V[pI¥ (D) =i/ 5(a* —a),
also have equations of motion for the fluctuations, i.e., the
spread of wave packet. Therefore, this approach enables us 5
to study the effects of the quantum fluctuations on dynamical q=(¥(t)|q|¥(t)|)= \ﬁ(a* +a), (9)
behavior. 2
The squeezed state is defined by the ordinary harmonic
oscillator displacement operat®? «) acting on a squeezed AG?=(¥(1)|(q—q)3| ¥ (t)|)=4G,
vacuum stateS(8)|0):

®

|aB)="D(a)S(B)|0), Ap?=(T(1)|(p—p)2 W (D)]) =1

! 4I1°G|. (10
a6 HAIG). (10

— At xA
D(e)=expea” —a”a), @) The canonical coordinate$s(I1) were introduced by Jakiw

A . and Kermar[26] for the quantum fluctuations, and its rela-
S(B)=exd 3(Ba"?—p*a?)]. tion with 8 in Eq. (2) is [5,8]
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In the limit of #=0, this Hamiltonian function reduces to the
classical Hamiltonian.

Initial conditions

In order to solve the equations of moti¢h5) and (16),
appropriate initial condition for variablegj{p) and G,II)
should be posed. In principle, the initial condition must be
physically meaningful. Thus the following two conditions

In the framwork of the squeezed state, the Heisenberg uncegre generally selected.

tainty relation becomes
i Tt
AgAp= E\/1+ 16G“I1°= 5

12

In fact, the squeezed statgyB) is equivalent to the
Gaussian-type sta{€]

|xp(t)>zﬁex;{%—(p&—qb))exp{%ﬂaz)m}
e V|ap), 3
where
0-1- — +2i1l
2G ’
eZi‘/’:\/% cosﬂ,3|+%sinﬁ,8| : 19

(1) Minimum uncertaintyThe initial statd ¥ (ty)) should
satisfy the condition of minimum uncertainty. Beca@gis
always larger than zero, from the uncertainty princiitej.
(12)], we have

II(ty)=0. (20

(2) Least quantum effectVe need to determine the initial
value ofG. This can be achieved by requesting minimization
of H with respect toG, i.e.,

9°H
——>0.
G2

JH

FTe) =0, (21)

For instance, for a harmonic oscillatéAppendix A we
haveG(tg) = 1/2w,.

IIl. ENHANCEMENT AND SUPPRESSION OF CHAOS

In this section, we would like to discuss the effect of
quantum fluctuations on classical chaos. It is commonly ar-

From the TDVP, we obtain dynamical equations for expecgued that quantum fluctuations suppress classical chaos due

tation values and quantum fluctuations,

._aH 3 JH 15
q—%, = E, (15
hG= o All= M 16
_ma _£1 ( )

the time derivative, and the Hamiltonian functibhis given
by definition
H=(¥ ()[R (). (17

These equation$l5), and 16 give us a simple and clear

picture about the motion of the expectation values as well a
the evolution of the quantum fluctuations, which are respon

sible for quantum diffusion. If the Hamiltonian consists of
separate kinetic and potential terms such as

H=3p?+V(a), (19
then the Hamiltonian function can be written as
H—1 2+V(q)+4h ! +2GII?
=3P (9) 3G
+ hG 71 1V 19
exp > 7 |~ (9). (19

to interference, while enhancing chaos due to tunneling. This
is a rather qualitative argument. With the help of the
squeezed state approach, we are able to do a quantitative
analysis of quantum fluctuations.

Up to now, there have been only a few works on this

issue. In some models, suppression of chaos comes about,
while in others enhancement takes place. Zhang and co-
workers observed suppression of chaos in kicked spin and
the kicked rotator systeni4,2,4]. Using a one-dimensional
fwoblem with a Duffing potential without any external per-
turbation, so that both classical and quantum behaviors are
regular, Pattanayak and SchieM& demonstrated that the
squeezed state behavior is chaotic, and concluded that the
quantum fluctuations induce chaos. The effect of enhance-
ment was also confirmed in a kicked double well mddg!
We shall see later that the KHO model provides a prototype
for studying these two effects. The enhancement and sup-
pression can be observed by changing the strength of the
kicks.

The Hamiltonian of the quantum KHO model can be writ-
ten as[18]

2 2
=2+ 25 v(@) o, (22
2 2
where
Sr= 2, S(t—nT). (23)
n=—ox
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Using the squeezed state as a trial wave function of Hamilwhile, at the timet=(n+1)T, it is kicked by the external
tonian(22), one can readily obtain potential. Therefore, before and after the kick the momentum
and its fluctuation undergo jumps:

H=Ho+H+H,, (24)
where P+1(TH)=pn(T7) —Ke e T 20 [q,(T7)]
P2 wiq’ K2 . (32
M= 72 @9 M, (TH)=(T7) + 5 Ke HeT12E g, (T7)].

is the Hamiltonian of the harmonic oscillator; Equations(31) and (32) are coupled differential equations.

Ap? w2AQ? From these equations, we can readily see that the squeezed
Hi=—— 0 (26) state dynamics differs from the classical one in two wayp.
2 2 There are two additional dimensions for the squeezed state

I . motion, namely, the particle moves in a four-dimensional
denotes the contribution from quantum fluctuations, and ) "
extended phase spad@) The classical quantitieqj(p) are
AG? a9 \2 coupled with the quantum fluctuations, which make the
Hp=exp{7( a—) V(q) 7 (27) semiquantal motion complicated. On the one hand, because
q of these two additional dimensions in phase space, we expect

denotes the contribution from the external perturbative pofhat invariant curves in classical phase space would not be
tential. The external potential can be even or odd. Withou@ble to prevent the trajectory from penetrating or crossing

loss of generality, we denote it as them semiquantally. On the other hand, since the quantum

fluctuations are always positive, they equal zero only in the
V(g)=K0(q), limiting case off=0; the effective potential strengtg is
(28) always less thaiK. The reduction of the effective potential

sin(koQ) for odd acting on the wave packet leads to the suppression of chaos.
(q):[cos(k Q for even These two mechanisms coexist in the semiquantal system.

0 ’ They compete with each other and determine the dynamical

From Eqgs.(15) and(16), we have behavior of the underlying system. Therefore, we expect that
quantum fluctuations may not only enhance chaos but also

a=p, suppress classical diffusion as well. This argument will be

nicely illustrated in the following.

p=— wéq— Ko ®'(q) Sy In this section we restrict our calculations on the potential
e 1

@9 V(q)=—K sin(q). (33
G=4IIG, However, we should point out that the main conclusions
1 2 |2 given in this section do not depend either on the parity of the
a_ _oq2_Y0o Fo . o potential or the sign oK.
H_E 211 7+EKeﬁ(q)5T,

A. Enhancement of chaos

where In solving Egs.(31) and (32), we used the seventh and

hk2G eighth order Runge-Kutta formula with adaptive stepsize

Kei=K exp< i ) (30)  control. The permissible error is fixed at 18. In Fig. 1(a),

we plot the classical phase spaag,(p) for a trajectory
is called the effective potential, whose physical meaning wiliStarting from(0,0) and evolving 16 kicks. The parameters
be discussed belowd’ is the first derivative of® with ~K=0.8 ando=1/m, where
respect tag. It is clear to see from Eq29) that, in the time o
interval NnT<t<(n+1)T, the harmonic oscillator takes the o= =0 (34
free motion governed by oT

is the ratio between the angular frequency of the kicks
(w7=27IT, T is the period of the kicksand the angular
2 frequency of the harmonic oscillates. In our calculations,

P="wof, we putwy=1. It is obvious that, in classical phase space,
31 regular (stable islandsand chaotic regions coexist. Figure
G=ATIG 1(b) shows the time evolution of expectation valugsg) of

the wave packet for Tokicks. The wave packet starts from

(do,Po,Go,I15)=(0,0,0.5,0), withzi=0.1. The selection of

M= — —o2— -2 initial conditionsGy=0.5 andll;=0 follows the minimum
8G? 2" uncertainty and least quantum effect conditions given in Sec.
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T T T T T T T T T 0.050

4t .
0.045 Classical T
2r i 0.040 -
& <
0.035 -
o OF T Semiquantal
0.030
2r i 0.025 . 1 . L . ".‘"""'T”'"'?'--m.-»'
0 2000 4000 6000 8000 10000
n
-4r . . . . . FIG. 2. Time(in units of the kick behavior of\,, for the tra-
4 2 0 5 4 jectory shown in Fig. 1. The increment &f, after a certain time in
the semiquantal case indicates the enhancement of chaos.
(@ qC' As a quantitative verification, we have numerically calcu-
lated the maximal Lyapunov exponent
A=limA, (35
4 i T n—o
for the trajectories in both cases. The time behaviox pfs
2t iy shown in Fig. 2. It demonstrates the coexistence of enhance-
ment and suppression. At the initial stage the enhancement
g mechanism is dominant. However, after a certain timgeof
o O - . ) s
the squeezed state becomes larger than its classical counter
part, which means that the enhancement mechanism be-
ol | comes dominant, and consequently leads to enhancement of
chaos. Furthermore, the chaotic motion in the extended
phase space is characterized by two positive Lyapunov ex-
4} 4 ponents in four-dimensional phase spacg,p(sG,II),
. . . . . which could be verified readily.

B. Suppression of chaos

(b) qsq We would like go to another limit, namely, very large
perturbation, to investigate the suppression of chaos. Classi-

FIG. 1. Classical phase spa@@ and time evolution of expec- cally, whenK increases, the motion becomes more and more
tation values §§,q) of a wave packetb) at K=0.8 for an irrational  chaotic. For a sufficient largk such aK =6, the classical
frequency ratioo=1/7r. One classical trajectory starts from (0,0). motion is completely chaotic, as shown in Figa3 where
The wave packet starts from a point having an initial fluctuationg=1/7. Like Fig. 1, Fig. 3 is for a trajectory starting from
parameter Go,115)=(0.5,0), and=0.1. The initial wave packet the origin and evolving 1Dkicks. The classical chaotic and
is a coherent state, i.e., it has same width in ptindq directions.  Giffusive process is easily seen from the evolution of this

phase plot. To demonstrate the suppression of cltaodif-

Il. Therefore, the initial wave packet has the same width infusion process we start a wave packet from (0,0,0.5,0) in
bothg andp directions, that is, it is a coherent state. If therethe four-dimensiona(4D) squeezed state phase space. The
are no kicks, the wave packet starting from this point will evolution is shown in Fig. ®). Comparing Figs. & and
evolve exactly along the classical particle’s trajectories for-3(b), it is obvious that, in the classical case, the phase space
ever. The fluctuations both in momentum and coordinatés chaotic and diffusive, whereas in the semiguantal case the
keep constant, and are independent of time. In this case, thffusion process is largely slowed down and suppressed.
sgueezed state dynamics exactly describes the classical offdere are invariant-curve-like structures that appear in the
Now, if we switch on the kick, the situation becomes quitesemiquantal phase space. These structures seem to form a
different. As is shown in Fig. (B), the initial point just lies in  barrier for diffusion and thus suppress chaos. The suppres-
stochastic sea; thus it is evident that in the classical case tlgon of chaos is quantitatively demonstrated by the large de-
trajectory will never enter into stable islands due to the ex-crease of\,, as is shown in Fig. 4, where the suppression
istence of invariant curves. However, as we predicted, thenechanism is most important.
invariant curves are not able to prevent the trajectory from To illustrate the suppression, we plot variation Kf
crossing it via other dimensions semiquantally. This is demwith time (in units of kickg in Fig. 5. This plot indeed dem-
onstrated by Fig. (b), where all stable islands in the classi- onstrates that the effective perturbation strength is much less
cal phase space are ‘“visited” by the semiquantal trajectorythan its classical counterpart for most of the time during the
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300 T Ll Ll T T 14 j T ! T j T j T .
200} ' ]
1.0 lc" TR T =
100 0.8 , .
_ I < Classical
o’ ]
or Semiquantal |
-100 / ]
1 1 | 1 | N
200} 0 2000 4000 " 6000 8000 10000
-300 . L . ' . 1 FIG. 4. Time behavior ok, for the trajectory shown in Fig. 3.
300 -200 -100 O 100 200 300 The large decrer_nent af, in t_he se_miql_JantaI case demonstrates the
strong suppression of classical diffusion.
q
@ c As a significant evidence of the suppression, it is conve-
60 nient to calculate energy diffusion with tinte (in units of
o kicks) for an ensemble of trajectories. The diffusion is de-
fined by(E,) subtracts initial averaging energi,), where
401 iy (---) means ensemble the average over many trajectories. In
our calculations we have taken such an ensemble averaging
20} . over 1¢ initial points which are uniformly distributed inside
] a disk area centered at the origin of the phase space. For the
d_cnr ok | classical oneE,=%(p2+q2)y, and for semiquantal dynam-
ics, E,, is defined by
20+ . 1
~n2 2.2
En:§<\l,|pn+ wOQn|\P>
40 ]
1 1 1
— 2 2.2 2 2
-60 . . . —E(pn+woqn)+§ﬁ 4—Gn+4HnGn+woGn .

60 -40 20 0 20 40 60
(37)

(b) qsq In Fig. 6, we show the energy diffusion &¢=6 and o
=1/7 for classical and semiquantal cases. The suppression

FIG. 3. Same as Fig. 1 but fét=6 with an irrational frequency of classical diffusion is very obvious

ratio o= 1/ for classical(a) and squeezed stafb) cases f=1).
The semiquantal phase space shows an obvious suppression of the . )
classical diffusion. C. Transition from enhancement to suppression

We have seen so far that enhancement may happen at the
evolution. This is the reason for the suppression. In fact, themallK regime, and suppression at the lakgeegime. Now
deduction of the effective potential acting on the wavewe would like to discuss the transition from enhancement to
packet has a clear physical picture. The width of a wavesuppression by changing the strength of the external poten-
packet centered aig(p) in coordinate space iAq= %G,

and the external potential has a wavelength ofiZ,. There- 7 — T T T T
fore, there are, in factn(= VA Gko/27) periods of external
potential acting on the wave packet simultaneously. This is
quite different from the classical model, where only one kick

acts on a particle at one time. Since the external potential is
negative in some places and positive in other places, the "
wider the wave packet, the larger the numbernof and
therefore, the smaller the effective potential acting on the
harmonic oscillator. However, if the wave packiket is so

small that it is smaller than the period of the external poten-

tial, then the effective potential is large. As a matter of fact,

the effective potentiaK o in Eq. (30) can be written as 0 2000 4000 6000 8000 10000

n
m2
Keg=K exp( mberik

(36) FIG. 5. Time evolution of the effective external potenti&l

27 for the orbit shown in Fig. 3.
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T T T T T T T T T T T T T
1400 ! . 400} -
L p ]
1200 - A
1 I ! \ ]
A 1000y ] 200+ 1
'-'d 800 ! Classical ]
/I\: 500 ] Semiquantal S
2 \ Q of ]
!
400 )
200 H .
L/ -200+ E
0 A ! . ! A ! . ! .
0 200 400 600 800 1000
n
-400 + E
1 L 'l

FIG. 6. Energy diffusion aK=6 for an irrational frequency
ratio o=1/m for classical and semiquantal cases. The ensemble
averaging is taken over 40nitial points which are uniformly dis-
tributed in an area of the disk centered&0) with a radius ofs in (@) qc|
the phase space. The diffusion coefficient in the semiquantal case is
obviously much smaller than that of the classical case, which indi-

-400  -200 0 200 400

cates a strong suppression of classical chaos. 150 J

tial for fixed quantum fluctuations. Here we want to show 100 1

that there exists a threshold value K§ distinguishing en- I

hancement from suppression. 50r T
To this end, we need to take an appropriate ensemble g [

average over many trajectories in phase space. However, & 0_' |

since the classical phase space of the KHO model is un- 50l ]

bounded, it is impossible to do such an average over the |

whole phase space. This makes numerical works very diffi- 100k i

cult. After many numerical experiments, we find a compro- I

mise, namely, we take the average over a disk centered at 150+ .

origin with radius#. We spread 1% 15 initial points uni- . . L L ! L L

formly distributed inside this area. In classical case, we cal- -150 -100 -50 0 50 100 130

culate the Lyapunov exponent for each trajectory after 10

kicks, and plot the averaged value denoted)ag in Fig. 7. (b) qsq

This averaged value is in analogy to the Kolmogorov entropy

in a bounded system. However, strictly speaking, this quan- FIG. 8. Demonstration of suppression for a rationat 1/4 fre-

tity cannot be called Kolmogorov entropy. Nevertheless, thigjuency ratio an& =6. (a) Classical phase spadg) Semiquantal

parameter captures more or less chaoticity of the underlyingusq.psq with 7i=1.

system. In the case of semiquantal dynamics, since we have

4D extended phase space, we always have two positiveyapunov exponents. We add these two values, and denote
the result ag\y. It is plotted in Fig. 7 in comparison with

0.12 — 1 the classical result.
- o Classical °o°°°- From Fig. 7 we can draw the following conclusior{$)
010 4 ot RS There exists a certain threshold value Kf. Before this
[+ h=01 oo°° 1 point, (As¢>(\¢), Which means that the degree of chaos is
0.08 1= 00" T enhanced,; after this point s <(\), chaos is suppressed.
A oos b Ooo°° ] This critical valueK, changes with. (2) At the region of
v | .° | K>K¢, (g fluctuates around a certain value. It does not
0.04 | ogﬁ.,.::,...ge::m::::m.ﬂ change withK. (3) The enhancement and suppression de-
- LW ] pends largely ork.
0.02 - ..033;“‘ - The results discussed in this section are restricted to an
r mm:;::giﬁ“ 1 irrational frequency ratio. One might ask whether our con-
0.00 Sa2iAL e e . clusion also applies to the rational frequency ratio. It is well
' ’ K' ' ' known that the KHO model is a degenerate system out of the

KAM theorem. In classical phase space, there exists a slow
FIG. 7. Transition from enhancement to suppression. The averdiffusion along the stochastic web for any small value of
aged Lyanpunov exponent vs the external potetitidor classical ~ Perturbation. Our numerical results also show enhancement
and semiquantal cases wil=0.1 and 1. The average is taken over and suppression. We give one example of rational frequency
15x 15 points uniformly distributed inside a disk of radi#scen-  ratios o= 1/4 andK=6 in Fig. 8 for suppression. The cor-

terd at (0,0). Herer= 1/r. responding Lyapunov exponent is shown in Fig. 9.
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1.4 T T T T ™3
10° 1

12 | 4
{. ...................................... 10° .
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0.4 10' 1
0.2 10° 1
0.0 1 1 | | 10" 1 wul 1 ! 1 ...?
0 2000 4000 6000 8000 10000 10° 10 10? 10° 10* 10° 10°

n

FIG. 9. The Lyapunov exponent for the trajectory shown in Fig.
8. FIG. 10. Evolution of the energy with tim@ units of kick9 for

the case of an even potential with a rational frequency ratio. Num-

Finally, we would like to say a few words about the initial b_ers in .the plot indicate the frequency ratio. The case of 1/1 coin_—
conditions and parity of the external potential. We have per¢ides with that of 1/2. Note that the curves have slope 2 asymptoti-
formed a wide range of numerical investigations, and foundally. and a transient dynamical localization phenomenon shows up.
that the above discussed qualitative and quantitative conclu-
sions are independent of the selection of the initial conditiorfluctuations(EQF). These two kinds of effects are the main
and the parity of the external potential. However, the selecingredients of the diffusion process in the squeezed state dy-
tion of the initial condition must be physically meaningful, Namics.
as we discussed in Sec. Il The ratioo is an important quantity, as we shall see soon.

Before concluding this section, we would like to discussWe takeo, the golden mean Va|U9g5=(\/§—1)/2, and its
the connection of suppression to the dynamical localizationcontinued-fraction expansiaris: 3,2,3, ... as examples.
In fact, this is a challenge to the squeezed state approach fands are generated by the Fibonacci sequence defined by
this subtle phenomenon. We argued that the dynamical loFo=1,F;=1, andF,=F,_,+F,_; for n>1. Without loss
calization observed in a kicked rotator is due to a suppresef generality, in all calculations, we keep parametersl,
sion of the chaos discussed above. In fact, in the limiting =6, ko=1, andwg=1, and the initial point is chosen as
case ofwy=0, the KHO modelEg. (22)] is reduced to the (0,0,0.5,0), which corresponds to the ground state of unper-
kicked rotator model, in which chaotic diffusion is com- turbed quantum harmonic oscillator.
pletely suppressed by the quantum fluctuations and results in
dynamical localization, a well established fact observed nu-

c : A. Numerical results
merically by Casatet al.[15] almost 20 years ago, and con-

firmed recently by experimerjtl7]. This was nicely illus- Figures 10 and 11 and 12 and 13 show our numerical
trated by Zhang and Le¢4] with the squeezed state results of energy diffusion of
approach. K coskoq)
V()= : (39
IV. DIFFUSION AND LOCALIZATION K sin(koq)

In Sec. lll we showed_how quantum f_Iuctuatlons e_nha_nc%r even and odd parity, respectively. Now we discuss these
and suppress chaos. This fact will definitely affect dlffusmntw0 cases separately

behavior. For instance, in the limiting case, when the sup-
pression becomes dominant, localization is expected to hap-
pen. In this section we shall give a detailed study of this. In
particular, we concentrate on the laigeregime. This is the

10° g

3

most difficult region in pure quantum computation. As we 10 F
shall see, the squeezed state approach not only provides an i
easy way to do numerical calculations but also makes it pos- 10°
sible to do some analytical estimations. =

The energyE,, of the kicked harmonic oscillator in the e
squeezed state approximatipBq. (37)] can be written as i
two parts: 10° F

E,.=ES+Ef. (38) W0
E; contains the first two terms in E¢37), which is due to

the motion of the centroid of a wave packet. They mimic the

effect of classical diffusiofECD). E! includes the last three FIG. 11. Same as Fig. 10, but for an irrational frequency ratio
terms in Eq.(37), and is attributed to the effects of quantum o= (y5—1)/2. The localization is obvious.
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B. Analytical estimates

The above numerical results can be understood by analyz-
ing evolution equationg29). In fact, we can analytically
derive the energy diffusion by studying syst€?9). Starting
from Eqgs.(29), we find that when the external perturbation is
absent, the two degrees of freedai@OF's) (p,q) and
(G,II) are decoupled, and each undergoes free motion. In
terms of action-angle variable, the Hamiltonian of the free
motions can be expressed as E6). From this formula, we
have already seen thhbth free motions of the two DOF’s
aredegeneratelt is this degeneracy which makes resonance
between the two frequencies possible in phase space. Conse-
quently, the squeezed state dynamical behavior of the kicked
harmonic oscillator is quite different from that of the kicked

FIG. 12. Same as Fig. 10, but for the case of odd potential. Theotator[4]. That is, the motions of the centroid and the fluc-
dashed line with slope 1 is drawn to guide the eye. tuations of the wave packet behave like an oscillator with
, i i . fixed frequenciesvy and 2w, respectively.

Even potential In this case, for all rational frequencies, However, when kicks are added, the two degree of free-
thezenergy will finally go quadratically with time, i.€€,  4om pecomes coupled, and energy may start to diffuse. It is
~n°. As shown in Fig. 10, the slope equals 2 asymptotically.onyenient to express the evolution of system in terms of

in the double logarithmic plot. However, for the case action-angle variables. From Eqg\4) and (A5) one can
=r/s with relatively larger ands, the diffusion starts only readily obtain four-dimensional maps

after a certain time. Before this time the energy diffusion is

localized. The transient time depends on the frequency rat ., =1,—Kq0'(Koy2l,/wg SiN ¢n)Koy2l /0o COS ¢,
tios, and is approximately of the order ofr{ ag)*l. We

call this transient region &ransient dynamical localization ¢, 1= ¢+ woT

region. , ) )

For the irrational case, dynamical localization occurs, as +Kert® ' (KoV2ln/wg SiN ¢y)Ko/ V210 SiN ¢y,
clearly demonstrated in Fig. 11. This significant phenomenon (40)
has been observed and investigated in various quantum sys- 7
tems in past few years. Joi1=Jdn+ Keﬁzkg‘/(4‘]n+ 1)2—-1

It is worth pointing out that for two trivial cases, i.er,
=1 and3, our squeezed state results given here agose-
pletelywith the quantum analytical results of RE20] which
has been the only existing analytical results of the quantum

X sin 6,0 (kov21 4/ wg Sin ép),

diffusion of this model up to now. This demonstrates the g . — g 120 T—K k24| 1— Antl cosé,
usefulness of the squeezed state approach. Moreover, by us- V43, +1)%—1

ing the squeezed state approach, we have also recovered the )

quantum results obtained numerically by Borgonovi and Re- X 0O (kov2ly/wg sin ép).

buzzini[21]. For more details, see Sec. V.

Odd potential In this case, quadratic law is observed only
in the case of rational frequency raties=r/s with odd s.
For other situations the energy diffuses linearly with time
approximately; see Figs. 12 and 13.

With this 4D map, we are able to perform an analytical es-
timate of the energy diffusion. We shall treat it at two dif-
ferent limiting cases.

Classical diffusion effect(#=0)

5

In the classical limit casé; =0 andE/=0, and the effect
of classical diffusion becomes dominant. Therefore, the
change of energy during one kick is

4

AE;=koKO' (Ko0n)(Pn COSoT— Qg SiN woT)
+3k3K20"?(Kodln). (42)

For K>1, the orbit can be supposed to be approximately
ergodic. After ensemble averaging over variabpeand g,
the first two terms vanish approximately; thus we obtain lin-

100 NEEETTTY B R TTIT W R T B S R TTTT B S W AT ITT| B S W N1 ear energy dlfoSIOn
10

ES~(AES)n~1k3K?n. (42)

FIG. 13. Same as Fig. 11 but for the case of odd potential. ThéNote that the average of the first two termsAdE;;, though
dashed line with slope 1 is drawn to guide the eye. is much smaller than the last term for laigeis nevertheless
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phenomenon observed in Fig. 11. This localization mecha-
nism, resorting to a pseudorandom number generator, re-
minds us what happens in the kicked rotator, where the lo-
calization is related to Anderson’s localization for a quantum
particle propagating in a one-dimensional lattice in the pres-
ence of a static-random potentfdl6]. Our results imply that
\ it might also be possible to construct a connection between

the kicked harmonic oscillator and Anderson’s problem in
the framework of the squeezed state approximation. The
mechanism discussed can also explain the transient dynami-
cal localization that occurs in the case of the rational fre-
quency ratio, as shown in Fig. 10. Since, during the time
s(o—og)‘l, a rational number behaves just like a
pseudoirrational number, a transient localization phenom-
enon occurs.

Q

General case

As to the general case of systd@B), both the ECD and
EQF may coexist. To illustrate this, we consider the case of
o=r/s, wherer ands are coprimed integers. Supposes
odd. As we have explained above, between teftective
kicks, (q,p) and G,II) evolve freely. Thus the angle vari-
ables of ¢,p) at the two successiwffectivekicks are¢ and
¢+2xr, respectively, and that of G,II) are 6 and
0+ 4mxr. From Eqs(A5) and(29), we find that, in this case,

For the second limit case, suppose a wave packet startee increment ofAp and AII have the same sign, which
from (q,p,G,I1)=(0,0,0.5,0) with an even potential, and means that both the ECD and EQF are excited, which is
the center of the wave packet keeps fixed; tB{js=0. The independent of the potential parity. Because the diffusion
energy diffusion is caused purely by the effects of the quandue to the EQF is-t2, which is much faster than that of the
tum fluctuations. In this case we shall analyze the diffusiorECD (~t), thus asymptoticallyt? diffusion shows up, as
process for two different frequency ratios, i.e., rational andshown in Fig. 12. However, i is even, there is one addi-
irrational. For the rational frequency ratio, let us take thetional effective kick between the above mentioned two,
simple case oir=2% as an example. During a time off3  namely, thes/2th kick, at which the angle variable o6(II)
there are three kicks acting on the harmonic oscillator. Sincés 6+ 27r, while that of @,p) is ¢+ #rr. Thus, for the even
the frequency of fluctuation is&,, (G,II) evolves four pe- potential case, the changesldfdue to the two consecutive
riods. Note that the effective amplitude of a kick acting oneffectivekicks have the same sign, which implies that the
the wave packet i rather thank. Among these three EQF is excited and? diffusion will show up. For the odd
kicks, only that one at a relative smalb affect the free potential case, the changesldfdue to the two consecutive
motion of the oscillator significantly. We call this kick the effective kicks have opposite sign, the EQF is thus sup-
effectivekick; the effects from other two kicks can be ne- pressed, and we obtain the linear diffusion seen in Fig. 13.
glected due to a very larg®, and consequently a very small For the irrationalo case, the EQF is suppressed and the
Keff- At the time when the nexffectivekick is in action,G ECD becomes dominant. Ip(q) happens to be a fixed point
is approximately the same because of the resonance; see Fig.the (p,q) plane, as is the case of Fig. 11, localization
14. Therefore, the increment &F is almost constant, which occurs. This is the reason for the different diffusion behav-

FIG. 14. Evolution G,II) plot for K=6 ando=2/3.

not exactly zero. This results in some oscillations Ef
around the linearityfsee Figs. 12 and 13

Effect of quantum fluctuations

means thallz,~n. Thus, from Eq(37), we obtain iors of irrational o in Figs. 11 and 13 for even and odd
external potentials, respectively. Please note thatg)
E,~n?, (43)  =(0,0) are the expectation values of all the eigenstates of the

harmonic oscillator; thus the localization we observed in Fig.
which gives rise to the quadratic law observed in Figs. 1011 is not restricted to the case of the ground state, as we
and 12. discussed up to now, but is very general.
If o is an irrational number, a very interesting thing will
happen. From Eq(A3) we know that the angular variable

L . C. Transition from localization to diffusion
when a kick is added is

The results discussed above focused on diffusion at very
On=2mno+ G(mo2 ). (44) large perturbation; in this case the underlying classical sys-
tem is completely chaotic. As a further example we would
This is nothing but a pseudorandom number generator, indiike to demonstrate a very interesting and important phenom-
cating that the jump ofl may happen in upped]>0) and enon in quantum mechanics, i.e., theneling effect We
lower (II<0) parts with the same probability, and thus thestart a wave packet from poi®,7.5 in the classical phase
increment of energy in the upper part will be canceled out byspace ¢,p). Here we haver=: and V(q) =K cosq with

the decrease in the lower part. This leads to the localizatiol =0.5. The wave packet has paramet&@g=3 and I,
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FIG. 16. Comparison of semiquantalashed lingand quantum
(solid line) diffusion for a=;11, wo=2/m, w;=8m, K=0.5, andx
=1. The trajectory starts frongg, pg) = (3.15,0). The semiquantal
trajectory has the same{,py) and Gq,11y) =(1/2w4,0). Please
compare it with Fig. 1 in Ref{21].

1000

500

22

T 00 20 3000 2900 a0 0250 460 600 850 1000 results in the smaK regime for short time evolution. This is
n n why there are only limited available quantum results in this
regime. We will compare them with our squeezed state re-
FIG. 15. Transition from localization to delocalization of a wave sults here.
packet driving by the quantum fluctuations. The wave packet start- First, let us look at the results obtained in REf0], al-
ing from a stable islanddp,po) =(0,7.5).0=1/5, wo=1, andK  ready shown in Fig. 10. As for the case of 1/1 and 1/2, our
=0.5.(a) Classical phase spao)—(d) Semiquantal energy diffu- squeezed state results agree completely with the quantum
sion. (b) #=1.(c) A=2. (d) 7=5. one of Ref.[20]. In this case both squeezed state and pure
quantal analyses preditt growth of the energy. We should
=0 according to the minimal uncertainty principle. It is a mention that it was conjectured in RdR0] that, for the
Gaussian wave packet. The classical phase space is shownggneral case of @/ the energy growth should be less titén
Fig. 15a). We see that the starting point lies inside a stabld="0m our squeezed state analysis we concluded that there are
island. Classically, a trajectory that starts from this point will only three different diffusionst?, t and localization. There-
never be able to escape. However, in the quantum case, tf@'e, our squeezed state analysis also agrees with| Bjfs
situation becomes very different. We expect that if the widthPrediction. _ _
of the wave packet is much smaller than the size of this NOw we turn to the results obtained by Borgonovi and
stable island, the wave packet will be confined by this stabldte€buzzini[21]. Since the time unit given in their pictures is
island, and thus lead to localization. However, if the wavenot clear, we are not able to make any quantitative compari-
packet becomes wider than the size of the stable island, fOn With our squeezed state results. Therefore, we performed
will spread out. Here we demonstrate this quantum phenonfiuantum calculations by using our own progresee Appen-
enon by the squeezed state approach. In Fig&)+35(d), dix B). All the system parameters are kept the same as that
we plot the energy evolution for different Planck constant used by Borgonovi and Rebuzzini. The results are given in
which corresponds to different widths of the initial wave Figs. 16 and 17. These pictures correspond to different dif-
packet. Ath=1 and 2, we observed a localization phenom-fUS_'On behawors. In Fig. 16,1 diffusion is obtalned_t(ls in
enon as in other quantum systems. The energy oscillaté§Mits of kick9; the squeezed state approach also gives rise to
around a certain value. When we incredsdurther to at? diffusive behavior, although there is a difference in pref-

—5 a transition from localization to delocalization occurs, &Ctor. In Fig. 17, both the quantum and squeezed state results
which is shown in Fig. 16). show localization around approximately the same energy.

Please compare these two pictures with Figs. 1 and 8 of
Borgonovi and Rebuzzifi21], respectively.

Our quantum computation techniq(&ppendix B is dif-

To give the reader a clear picture about the accuracy oferent from that used in Ref20]. For a self-consistent test,
the squeezed state approach, we would like to compare owe have used the same parameter as that of Fig. 2 in Ref.
results with those obtained from pure quantum computation.20], and computed the energy diffusion with our method.
However, as mentioned above, since diffusion occurs in th&Ve found that our results agree those of R&f] in every
whole unbounded phase space and cannot be reduced to nuetail.
tion on a cylinder like the case of a kicked rotator, a pure As already emphasized, because of the unbounded phase
guantum(numerica) investigation is very difficult, in par- space, the gquantum computation is very time consuming,
ticular, in the largeK regime. Nevertheless, with a large even for small perturbation. For instance, about ten days
amount of CPU time, one would be able to obtain someCPU time (IBM RISC System/6000 42T, with 192 Mbyte

V. COMPARISON WITH QUANTUM RESULTS
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— T - T can mimic many true quantum behaviors such as those dem-
140+ . onstrated in this paper. Moreover, there are examples show-
ing that the squeezed state approach gives rise to better re-
sults than the semiclassical method. However, under which
120 T condition or how far the squeezed state approach can go
beyond the semiclassical method is still an open problem that
deserves further numerical as well as theoretical study.
Finally, we would like to remark on the quantization of a
quantum system whose classical counterpart is chaotic. As is
well known, this is a tough problem which has attracted tre-
mendous attention in last two decades. Among many others,
Gutzwiller's trace formula might be the most plausible one
[27]. However, this approach encountered difficulty of diver-
L gence, although many important contributions have been
0 200 400 600 800 1000 made to overcome this difficulty. We believe that the
squeezed state approach might be an alternative way that can
n contribute to this. Recent successful application of this
method by Pattanayak and Schi¢d] to calculate eigenen-
ergies of a chaotic system sheds light on this direction.

100 .
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APPENDIX A: QUANTIZATION OF THE HARMONIC

80 OSCILLATOR BY THE SQUEEZED STATE APPROACH

In this appendix, we would like to demonstrate how the
squeezed state works when applied to a simple quantum sys-
L L L L tem, a harmonic oscillator, which is the KHO system with a
0 200 400 600 800 1000 zero external potential. The harmonic oscillator is a simple
n but very important model in quantum mechanics. It is an
integrable system, and its eigenenergies as well as eigenfunc-
FIG. 17. Comparison of semiquantdbp) and quantumbot-  tions can be obtained analytically. Therefore, this model is
tom) diffusion for o=(y5—1)/2, wo=1, K=1, and%=1. The  very suitable for testing approximate methods such as the
trajectory starts fromdg,po) =(15,0). The semiquantal trajectory WKB method and others.
has the sameq,py) and Gg,11,) =(1/2w,,0). Please compare it It is well known that the WKB approximation can give us
with Fig. 8 in Ref.[21]. exact eigenenergies for this integrable system. However, it
cannot yield exact eigenfunctions, in particular, for the low-
RAM) has been spent for Fig. 16, and 20 days CPU time folying eigenstates. It gives only the envelope of the wave
Fig. 17. function in the semiclassical lim—0. In this appendix,
we shall demonstrate that when applying the squeezed state
VI. CONCLUSIONS AND DISCUSSIONS approach to the harmonic oscillator model, one can obtain

i ) the energy levels precisely as well as the eigenfunctions.
Applying Fhe sq_ueezed state approach to the kicked quan- e harmonic oscillator has the Hamiltonian operator
tum harmonic oscillator, we illustrate how the quantum fluc-

tuations affect the classical dynamics. We have shown that ~o

chaoticity can be enhanced as well as suppressed by the |:|:p_+

guantum fluctuations. A transition from enhancement to sup- 2

pression is observed when we change the strength of the .

kicks. Applying the squeezed state approach to this system, one can
Moreover, with this squeezed state approach, we are ab@@sily obtain

to investigate the energy diffusion. Three different energy

60

w50
2

(A1)

2 2.2
diffusions have been observed for the kicked quantum har- p* wod” A1 2 2
; . L . B == +-| —=+ + .
monic oscillator, namely, localization, linear diffusion, and H 2 2 2\4G 4G+ wgG (A2)
quadratic diffusion. The localization is due to strong suppres-
sion. This Hamiltonian can be expressed in terms of action-angle

Though it is a kind of approximation, the squeezed statevariables
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H=wol +2wo(J+%3%), (A3)  method, the energy is taken to be the classical form, ke.,
=H,. This is one of the reasons that people call this ap-
where proach thesemiquantum approach
Let us now construct the eigenfunction by the squeezed
state approach. We see that when the trial wave function

1 1
1= 27 jg pdg J= 2m é d(%G). (A4) |W(t)) is transformed to

The transformations betweeq,p), (G,1I) and (,¢), (J,6)

have the following forms: ~ in(t)
[P (t))=ex 7 [P (1)), (A8)
g=2llw, sin ¢,
the derived variational equations of motion remain invariant.
Substituting| ¥ (t)) into the Schrdinger equation, we can
p=+2lw, COS ¢, obtain the equation determining(t),
(A5)
ft J N
1 1 ANt)= | dt'{(¥(t")]ih——H|¥(t'))=Ag+Np.
G=—[ 23+ 5| =\23(23+1) cosd|, ()= ] v i G ~ RV} =re 2o

wo The second part of the integral corresponds to the dynamical
5 V2J(2J+1) sin @ phase. We denote it . The first term is the geometrical

= . phase noted asg, which is
(2J+3)—+2J3(23+1) cos @

From Eq.(A5) one can see that the motionlméthdegrees of t . t

freedom arelegeneratenamely,dH,/4dl is independent of )\G:%f (pq—qp)dt+hf I1G dt. (A10)

and 9H,/4J independent ofl. Furthermore, G,II) are de- 0 0

coupled from €,p). Thus the centroid of the wave packet . . o .
goes exactly along the classical trajectory. While the fluctuaSince the motions of,q) and (G,1II) are periodic, this ,
tions in momentum and position are time independent, i.e g8ometrical phase is the Aharanov-Anandan form of Berry’s
the width of the wave packet stays constant. From the minjPhase. During the evolution, each point along the periodic
mal uncertainty principle for the initial condition mentioned ©TPit acquires a phase factor. However, the dynamical phase
in Sec. Il, we haveG=1/2w, and IT=0. Therefore, the does not change during the evolution; only the geometrical

wave packet along the periodic orbit always keeps its form aBhase matters. So the eigenfunction is a weighted sum over
a coherent state. points of the commensurate periodic orfit]. The weight

The time evolution of bothd,p) and (G,IT) are periodic factor at each point is an appropriate geometrical phase. Fur-
with period To( =27/ w,) andT,/2, respectively. So we can thermore, as mentioned above, according to the requirement

apply the EBK quantization to the extended phase space of the initial condition, the initial wave packet is a coherent
" wave packet, and it does not change its form when cycling

along the periodic orbit. Substituting expressionsgandq
l=n#, J=mh, n,m=01.2..., (A6)  in EQ. (A5) into Eq.(A10), and keeping in mind thdi =0,
we can easily evaluate the integral and obtain the geometri-
Substitutingl andJ into Eq. (A3) and keeping in mind that cal phase at timg, which is
G=1/2wy and I1=0, and thusm=0, we obtain the
squeezed state eigenenergy, Ng(t)=nh o, (A11)

— 1
En=fiwg(n+32). (A7) where ¢=ml2— 5. Thus the eigenfunction for the bound

This is exactly the eigenenergy of the harmonic osciIIator.State having the eigenener@y, in Eq. (A7) is

Here the zero point energyh w, comes into the formula in or o
a very natural and straightforward way. This is quite differ- Cf ei()‘G/ﬁ)|a>d¢>=CJ' e "a)dy, (A12)

ent from the WKB method. In the WKB methog/ w, 0 0

comes from the Maslov phase correction which is necessary

because of the singularity of the wave function. In thewhere|a) is the coherent state is the angle in thed,d, p)
squeezed state approach, since we do not have any singulaplane, andC is the normalization constant. This is nothing
ties, the Maslov-Morse correction is incorporated by the exbut the number eigenstale) given in Eq.(7) except for the
tended variable$s andII. Furthermore, the energy of the prefactor. This constant can be easily calculated by the
system is in the form of the expectation value of the undernormalization. Therefore, in the coordinate representation,
lying Hamiltonian operator, whereas in the usual WKB the wave function is
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2 ") ~2 2.2
— —i HoA p-A w0 A
‘I’(q)—CJ dnp e "7 q|a). (A13) i 07 _i _i 0
n o (qle) ex i 7 ex i a7 ex i o7
This is the exact wave function of the harmonic oscillator. 02A
xXexp —I H +O(A3) (B3)

APPENDIX B: PROCEDURE OF QUANTUM
COMPUTATION

In this appendix, we describe our procedure of quantunThis technique of symmetrically splitting the kinetic propa-
computation. Since the Hamiltonian is periodic in time, thegator reduces the error introduced by neglecting the commu-
Floquet theory can be applied. The time evolution can beator between the kinetic and potential operators. The error is
reduced to evolution of the eigenstate over one driving pereduced taO(A%) from O(A?) in a nonsymmetric splitting.
riod, The kinetic propagation is carried out in momentum space,

R since in this space the time evolution is simplified as multi-
| (t+T))=U(T)|W¥(t)), (B1)  plication. The potential step is performed in coordinate space
for the same reason. The kick step, performed once per pe-

where riod, is also done in coordinate space. A fast Fourier trans-
0.7 V(G form routine is used to transform wave function between

U(T):Ofreeo o= exp( —j L) exp( —j ﬂ thesg two spaces. _
h h Since the KHO model is a degenerate system, a wave

(B2)  packet may diffuse rapidly, even to infinity in both coordi-
nate and momentum space. The average energy of the wave
is the Floguet operator. packet may reach a rather high value during the diffusion.
To simulate quantum diffusion in this degenerate systenThis amplifies the error caused by the approximation made in
(22), the Fourier spectral method is employed. The time inEg. (B3). Therefore, the self-adaptative procedure is used to
terval of free propagation is divided into many slices, eachadjust the time slice in EB3) in each period to make sure
having a width ofA. For each slice the evolution operator is that the width of the time slice is much smaller than the
factored into a product of kinetic and potential propagatorinverse energy. Second, both coordinate and momentum
arranged in a symmetric way, so that a full potential step ispaces should be large enough. So a large nurf32768

sandwiched between two half kinetic steps, namely, of Fourier components are used in our computations.
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