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Squeezed state dynamics of kicked quantum systems
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We study kicked quantum systems by using the squeezed state approach. Taking the kicked quantum
harmonic oscillator as an example, we demonstrate that chaos in an underlying classical system can be
enhanced as well as suppressed by quantum fluctuations. Three different energy diffusions are observed in the
kicked quantum harmonic oscillator, namely, localization, linear diffusion, and quadratic diffusion.
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I. INTRODUCTION

A squeezed state is a generalized coherent state, w
has a wide application in many branches of physics suc
quantum optics, high energy physics, etc. Recent years h
witnessed a growing application of the squeezed state to
field of nonlinear dynamics and chaos@1–12#. Since the
squeezed state approach is a kind of approximation of qu
tum mechanics, it is called asemiquantum approachby
people in this community. The time evolution of expectati
values and fluctuations of the squeezed state is thus na
semiquantum dynamics, or squeezed state dynamics.

The main purpose of the squeezed state approach
study how quantum fluctuations manifest themselves on c
sical trajectories. This approach starts directly from quant
systems with no reference to classical limit. In fact, it h
been shown@5# that the squeezed state dynamics exits e
for systems without a well-defined classical dynamics. G
erally, the squeezed state approach simplifies the quan
version, and provides a complementary way to the semic
sical method. In some special cases~unfortunately, we still
do not know under what kind of conditions!, it gives us
better results than the semiclassical method@1–5,7,8#. There-
fore, in addition to the semiclassical approach, the squee
state approach is also a very useful tool to study the prob
of classical-quantum correspondence.

The squeezed state approach has proven to be very
cessful in studying dynamical systems ranging from in
grable to many-body nonintegrable systems. Among m
others, we name just a few examples here. In calculating
ground state energy for quantum system with poten
V(q)52V0 /cosh2aq, Tsui @8# discovered that the groun
state energy obtained by the squeezed state approach is
closer to the exact ground state energy than that obta
from the WKB method. More recently, Pattanayak a
Schieve@11# applied this approach to a classically chao
system, for which the WKB method completely fails. Th
have successfully calculated low-lying eigenenergies wh
agree within a few percent with the pure quantum~numeri-
cal! results. In addition to the ground state and/or lower
cited state energies, the squeezed state approach can pr
a way to obtain correct eigenfunctions. For instance, in
PRE 581063-651X/98/58~2!/1743~14!/$15.00
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plying the squeezed state approach to a harmonic oscilla
we can obtain not only the eigenenergies but also the eig
functions ~including the ground state! exactly, as we shall
see in Appendix A, whereas the semiclassical method fail
yield the exact eigenfunctions. As a further example
many-body systems, we would like to mention that we ha
used the squeezed state approach to the one-dimens
quantum Frenkel-Kontoroval model@13#, which is a non-
trivial many-body, nonintegrable system. Our results sh
that the squeezed state approach very nicely captures
feature of the quantum effect, namely, the standard m
which, determining the coordinates of the classical grou
state, is renormalized to an effective sawtooth map in
quantum case. The squeezed state results agree well with
of the quantum Monte Carlo method@13#.

In this paper, we would like to apply the squeezed state
study generic behaviors of kicked quantum systems. I
well known that, in the development of quantum cha
kicked quantum systems play a very important role. Pro
types of these kicked systems are the kicked rotator
kicked harmonic oscillator~KHO!. They represent two dif-
ferent classes of dynamical systems. On the one hand,
kicked rotator obeys the Kolmogorov-Arnold-Moser~KAM !
theorem. Classically, as the kick strength increases, invar
curves gradually break up. When the kick strength excee
critical value ofKc50.9716 . . . , thelast invariant curve dis-
appears, and bounded chaos turns into global chaos, ch
terized by unbounded diffusion in the momentum directi
@14#. Quantum mechanically, the diffusion follows the cla
sical one only up to a certain time, after which it is com
pletely suppressed, thus leading to dynamical localizat
@15#. This phenomenon was connected to the Anderson
calization@16#, and was confirmed experimentally@17#.

On the other hand, since a harmonic oscillator is a deg
erate system, the KHO model is out of the framework of t
KAM theorem; that is, diffusion can occur along stochas
webs for any small kick strength. As a matter of fact, t
KHO model is not a toy model; it stems from a real physic
system. It describes a charged particle moving in a magn
field, and under the disturbance of a wave packet@18#. It has

1 1
2 degrees of freedom. Classically, it depends on the r
1743 © 1998 The American Physical Society
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between frequency of the harmonic oscillator and that of
external kicks@see Eq.~34!#. This system displays abunda
structures in phase space such as crystal, quasicrystal
stochastic webs@18,19#. Moreover, since the phase space
the KHO is unbounded and cannot be reduced to a cylin
as in the case of the kicked rotator model, numerical inv
tigation of the quantum KHO is much more difficult tha
that of the kicked rotator model. Therefore, contrary to
kicked rotator, only a few attempts have been made in
quantum KHO@20–24#. A general picture about the quantu
behavior of the KHO is still lacking.

In this paper, using the squeezed state approach, we
able to obtain the diffusion behavior of the quantum KH
model not only numerically but also analytically. The pap
is organized as follows. In Sec. II, we give a brief introdu
tion of the squeezed state approach for purposes of
containment. In Sec. III, by using the KHO model, we sh
demonstrate that quantum fluctuations will enhance chao
a small perturbation regime, whereas it will suppress cha
diffusion at a large perturbation regime. In Sec. IV, we sh
study the diffusion and localization phenomena. In Sec.
comparisons between the squeezed state results and the
few available quantum results will be given. We shall co
clude our paper with discussions and remarks in Sec. VI
Appendix A, we apply this approach to quantize the h
monic oscillator, which exactly yields eigenenergies a
eigenfunctions. In Appendix B, we outline our procedure
the pure quantum computation for KHO in some spec
cases.

II. SQUEEZED STATE APPROACH

The squeezed state approach starts from the ti
dependent variational principle~TDVP! formulation

dE dt^C~ t !u i\
]

]t
2ĤuC~ t !&50. ~1!

Variation with respect tôC(t)u anduC(t)& gives rise to the
Schrödinger equation, and its complex conjugate~see, e.g.,
Ref. @25#!, respectively. The true solution may be appro
mated by restricting the choice of states to a subspace o
full Hilbert space, and finding the path along which t
above equation is satisfied within this subspace. In
squeezed state approach, the squeezed coherent state i
sen asuC(t)&. In this manner, as we shall see below,
addition to the dynamics of centroid of wave packet, we w
also have equations of motion for the fluctuations, i.e.,
spread of wave packet. Therefore, this approach enable
to study the effects of the quantum fluctuations on dynam
behavior.

The squeezed state is defined by the ordinary harm
oscillator displacement operatorD(a) acting on a squeeze
vacuum stateS(b)u0&:

uab&5D~a!S~b!u0&,

D~a!5exp~aâ12a* â!, ~2!

S~b!5exp@ 1
2 ~bâ122b* â2!#.
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â1 and â are boson creation and annihilation operato
which satisfy the canonical commutation relation@ â,â1#
51. The coherent state is just operatorD acting on the
vacuum stateu0&,

ua&5D~a!u0&. ~3!

In terms of the number eigenstateun&, the coherent state ca
be written as

ua&5expS 2
1

2
uau2D (

n50

`
an

An!
un&. ~4!

a is eigenvalue of creation operator, i.e.,

âua&5aua&. ~5!

Denoting

a5uaueih, ~6!

and taking the integral over angleh from 0 to 2p on both
sides of Eq.~4!, we obtain the number eigenstate express
in terms of the coherent state,

un&5
1

2p
expS 1

2
uau2D uau2nAn! E

0

2p

dh e2 inhua&. ~7!

The coordinate and momentum operators are defined as

p̂5 iA\

2
~ â12â!,

q̂5A\

2
~ â11â!. ~8!

Thus we have expectation values and variances

p[^C~ t !u p̂uC~ t !&5 iA\

2
~a* 2a!,

q[^C~ t !uq̂uC~ t !u&5A\

2
~a* 1a!, ~9!

Dq2[^C~ t !u~ q̂2q!2uC~ t !u&5\G,

Dp2[^C~ t !u~ p̂2p!2uC~ t !u&5\S 1

4G
14P2GD . ~10!

The canonical coordinates (G,P) were introduced by Jakiw
and Kerman@26# for the quantum fluctuations, and its rela
tion with b in Eq. ~2! is @5,8#
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G[
1

2 Ucoshubu1
b

ubu
sinhubuU2

,

P[
i

2

b* 2b

ubu
sinhubucoshubu

Ucoshubu1
b

ubu
sinhubuU2 . ~11!

In the framwork of the squeezed state, the Heisenberg un
tainty relation becomes

DqDp5
\

2
A1116G2P2>

\

2
. ~12!

In fact, the squeezed stateuab& is equivalent to the
Gaussian-type state@7#

uC~ t !&[
1

~2G!1/4
expS i

\
~pq̂2qp̂! DexpS 1

2\
Vq̂2D u0&

5e2 icuab&, ~13!

where

V512
1

2G
12iP,

e22ic5
1

AG
S coshubu1

b

ubu
sinhubu D . ~14!

From the TDVP, we obtain dynamical equations for exp
tation values and quantum fluctuations,

q̇5
]H

]p
, ṗ52

]H

]q
, ~15!

\Ġ5
]H

]P
, \Ṗ52

]H

]G
, ~16!

which are canonical equations of motion. The dot deno
the time derivative, and the Hamiltonian functionH is given
by definition

H[^C~ t !uĤuC~ t !&. ~17!

These equations~15!, and 16! give us a simple and clea
picture about the motion of the expectation values as we
the evolution of the quantum fluctuations, which are resp
sible for quantum diffusion. If the Hamiltonian consists
separate kinetic and potential terms such as

Ĥ5 1
2 p̂21V~ q̂!, ~18!

then the Hamiltonian function can be written as

H5
1

2
p21V~q!1\S 1

8G
12GP2D

1H expF\2 GS ]

]qD 2G21J V~q!. ~19!
er-

-

s

s
-

In the limit of \50, this Hamiltonian function reduces to th
classical Hamiltonian.

Initial conditions

In order to solve the equations of motion~15! and ~16!,
appropriate initial condition for variables (q,p) and (G,P)
should be posed. In principle, the initial condition must
physically meaningful. Thus the following two condition
are generally selected.

~1! Minimum uncertainty. The initial stateuC(t0)& should
satisfy the condition of minimum uncertainty. BecauseG0 is
always larger than zero, from the uncertainty principle@Eq.
~12!#, we have

P~ t0!50. ~20!

~2! Least quantum effect. We need to determine the initia
value ofG. This can be achieved by requesting minimizati
of H with respect toG, i.e.,

]H

]G
50,

]2H

]G2
.0. ~21!

For instance, for a harmonic oscillator~Appendix A! we
haveG(t0)51/2v0.

III. ENHANCEMENT AND SUPPRESSION OF CHAOS

In this section, we would like to discuss the effect
quantum fluctuations on classical chaos. It is commonly
gued that quantum fluctuations suppress classical chaos
to interference, while enhancing chaos due to tunneling. T
is a rather qualitative argument. With the help of t
squeezed state approach, we are able to do a quantit
analysis of quantum fluctuations.

Up to now, there have been only a few works on th
issue. In some models, suppression of chaos comes a
while in others enhancement takes place. Zhang and
workers observed suppression of chaos in kicked spin
the kicked rotator systems@1,2,4#. Using a one-dimensiona
problem with a Duffing potential without any external pe
turbation, so that both classical and quantum behaviors
regular, Pattanayak and Schieve@9# demonstrated that the
squeezed state behavior is chaotic, and concluded tha
quantum fluctuations induce chaos. The effect of enhan
ment was also confirmed in a kicked double well model@6#.
We shall see later that the KHO model provides a prototy
for studying these two effects. The enhancement and s
pression can be observed by changing the strength of
kicks.

The Hamiltonian of the quantum KHO model can be wr
ten as@18#

Ĥ5
p̂2

2
1

v0
2

2
q̂21V~ q̂!dT , ~22!

where

dT5 (
n52`

`

d~ t2nT!. ~23!
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Using the squeezed state as a trial wave function of Ha
tonian ~22!, one can readily obtain

H5Ho1H f1Hp , ~24!

where

Ho5
p2

2
1

v0
2q2

2
~25!

is the Hamiltonian of the harmonic oscillator;

H f5
Dp2

2
1

v0
2Dq2

2
~26!

denotes the contribution from quantum fluctuations, and

Hp5expFDq2

2 S ]

]qD 2GV~q!dT ~27!

denotes the contribution from the external perturbative
tential. The external potential can be even or odd. With
loss of generality, we denote it as

V~q!5KQ~q!,
~28!

Q~q!5H sin~k0q! for odd

cos~k0q! for even.

From Eqs.~15! and ~16!, we have

q̇5p,

ṗ52v0
2q2KeffQ8~q!dT ,

~29!

Ġ54PG,

Ṗ5
1

8G2
22P22

v0
2

2
1

k0
2

2
KeffQ~q!dT ,

where

Keff5K expS 2
\k0

2G

2 D ~30!

is called the effective potential, whose physical meaning w
be discussed below.Q8 is the first derivative ofQ with
respect toq. It is clear to see from Eq.~29! that, in the time
interval nT,t,(n11)T, the harmonic oscillator takes th
free motion governed by

q̇5p,

ṗ52v0
2q,

~31!

Ġ54PG,

Ṗ5
1

8G2
22P22

v0
2

2
,

il-

-
t

ll

while, at the timet5(n11)T, it is kicked by the external
potential. Therefore, before and after the kick the moment
and its fluctuation undergo jumps:

pn11~T1!5pn~T2!2Ke2[\Gn~T2!]/2Q8@qn~T2!#,

~32!

Pn11~T1!5Pn~T2!1
k0

2

2
Ke2[\Gn~T2!]/2Q@qn~T2!#.

Equations~31! and ~32! are coupled differential equations
From these equations, we can readily see that the sque
state dynamics differs from the classical one in two ways.~1!
There are two additional dimensions for the squeezed s
motion, namely, the particle moves in a four-dimension
extended phase space.~2! The classical quantities (q,p) are
coupled with the quantum fluctuations, which make t
semiquantal motion complicated. On the one hand, beca
of these two additional dimensions in phase space, we ex
that invariant curves in classical phase space would no
able to prevent the trajectory from penetrating or cross
them semiquantally. On the other hand, since the quan
fluctuations are always positive, they equal zero only in
limiting case of\50; the effective potential strengthKeff is
always less thanK. The reduction of the effective potentia
acting on the wave packet leads to the suppression of ch
These two mechanisms coexist in the semiquantal sys
They compete with each other and determine the dynam
behavior of the underlying system. Therefore, we expect
quantum fluctuations may not only enhance chaos but
suppress classical diffusion as well. This argument will
nicely illustrated in the following.

In this section we restrict our calculations on the poten

V~q!52K sin~q!. ~33!

However, we should point out that the main conclusio
given in this section do not depend either on the parity of
potential or the sign ofK.

A. Enhancement of chaos

In solving Eqs.~31! and ~32!, we used the seventh an
eighth order Runge-Kutta formula with adaptive steps
control. The permissible error is fixed at 10212. In Fig. 1~a!,
we plot the classical phase space (qcl ,pcl) for a trajectory
starting from~0,0! and evolving 104 kicks. The parameters
K50.8 ands51/p, where

s5
v0

vT
~34!

is the ratio between the angular frequency of the kicksvT
(vT52p/T, T is the period of the kicks! and the angular
frequency of the harmonic oscillatorv. In our calculations,
we put v051. It is obvious that, in classical phase spac
regular ~stable islands! and chaotic regions coexist. Figur
1~b! shows the time evolution of expectation values (q,p) of
the wave packet for 104 kicks. The wave packet starts from
(q0 ,p0 ,G0 ,P0)5(0,0,0.5,0), with\50.1. The selection of
initial conditionsG050.5 andP050 follows the minimum
uncertainty and least quantum effect conditions given in S
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II. Therefore, the initial wave packet has the same width
bothq andp directions, that is, it is a coherent state. If the
are no kicks, the wave packet starting from this point w
evolve exactly along the classical particle’s trajectories f
ever. The fluctuations both in momentum and coordin
keep constant, and are independent of time. In this case
squeezed state dynamics exactly describes the classical
Now, if we switch on the kick, the situation becomes qu
different. As is shown in Fig. 1~a!, the initial point just lies in
stochastic sea; thus it is evident that in the classical case
trajectory will never enter into stable islands due to the
istence of invariant curves. However, as we predicted,
invariant curves are not able to prevent the trajectory fr
crossing it via other dimensions semiquantally. This is de
onstrated by Fig. 1~b!, where all stable islands in the class
cal phase space are ‘‘visited’’ by the semiquantal trajecto

FIG. 1. Classical phase space~a! and time evolution of expec
tation values (p,q) of a wave packet~b! at K50.8 for an irrational
frequency ratios51/p. One classical trajectory starts from (0,0
The wave packet starts from a point having an initial fluctuat
parameter (G0 ,P0)5(0.5,0), and\50.1. The initial wave packe
is a coherent state, i.e., it has same width in bothp andq directions.
n

l
-
e
he
ne.

he
-
e

-

.

As a quantitative verification, we have numerically calc
lated the maximal Lyapunov exponent

l5 lim
n→`

ln ~35!

for the trajectories in both cases. The time behavior ofln is
shown in Fig. 2. It demonstrates the coexistence of enha
ment and suppression. At the initial stage the enhancem
mechanism is dominant. However, after a certain time,ln of
the squeezed state becomes larger than its classical cou
part, which means that the enhancement mechanism
comes dominant, and consequently leads to enhanceme
chaos. Furthermore, the chaotic motion in the exten
phase space is characterized by two positive Lyapunov
ponents in four-dimensional phase space (q,p,\G,P),
which could be verified readily.

B. Suppression of chaos

We would like go to another limit, namely, very larg
perturbation, to investigate the suppression of chaos. Cla
cally, whenK increases, the motion becomes more and m
chaotic. For a sufficient largeK such asK56, the classical
motion is completely chaotic, as shown in Fig. 3~a!, where
s51/p. Like Fig. 1, Fig. 3 is for a trajectory starting from
the origin and evolving 104 kicks. The classical chaotic an
diffusive process is easily seen from the evolution of t
phase plot. To demonstrate the suppression of chaos~or dif-
fusion process!, we start a wave packet from (0,0,0.5,0)
the four-dimensional~4D! squeezed state phase space. T
evolution is shown in Fig. 3~b!. Comparing Figs. 3~a! and
3~b!, it is obvious that, in the classical case, the phase sp
is chaotic and diffusive, whereas in the semiquantal case
diffusion process is largely slowed down and suppress
There are invariant-curve-like structures that appear in
semiquantal phase space. These structures seem to fo
barrier for diffusion and thus suppress chaos. The supp
sion of chaos is quantitatively demonstrated by the large
crease ofln , as is shown in Fig. 4, where the suppressi
mechanism is most important.

To illustrate the suppression, we plot variation ofKeff
with time ~in units of kicks! in Fig. 5. This plot indeed dem
onstrates that the effective perturbation strength is much
than its classical counterpart for most of the time during

FIG. 2. Time~in units of the kick! behavior ofln for the tra-
jectory shown in Fig. 1. The increment ofln after a certain time in
the semiquantal case indicates the enhancement of chaos.
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evolution. This is the reason for the suppression. In fact,
deduction of the effective potential acting on the wa
packet has a clear physical picture. The width of a wa
packet centered at (q,p) in coordinate space isDq5A\G,
and the external potential has a wavelength of 2p/k0. There-
fore, there are, in fact,m(5A\Gk0/2p) periods of external
potential acting on the wave packet simultaneously. Thi
quite different from the classical model, where only one k
acts on a particle at one time. Since the external potentia
negative in some places and positive in other places,
wider the wave packet, the larger the number ofm, and
therefore, the smaller the effective potential acting on
harmonic oscillator. However, if the wave packetDq is so
small that it is smaller than the period of the external pot
tial, then the effective potential is large. As a matter of fa
the effective potentialKeff in Eq. ~30! can be written as

Keff5K expS 2
m2

2p2D . ~36!

FIG. 3. Same as Fig. 1 but forK56 with an irrational frequency
ratio s51/p for classical~a! and squeezed state~b! cases (\51).
The semiquantal phase space shows an obvious suppression
classical diffusion.
e

e

is

is
e

e

-
,

As a significant evidence of the suppression, it is con
nient to calculate energy diffusion with timen ~in units of
kicks! for an ensemble of trajectories. The diffusion is d
fined by^En& subtracts initial averaging energy^E0&, where
^•••& means ensemble the average over many trajectorie
our calculations we have taken such an ensemble avera
over 104 initial points which are uniformly distributed insid
a disk area centered at the origin of the phase space. Fo
classical one,En5 1

2 (pn
21qn

2)cl , and for semiquantal dynam
ics, En is defined by

En5
1

2
^Cu p̂n

21v0
2q̂n

2uC&

5
1

2
~pn

21v0
2qn

2!1
1

2
\S 1

4Gn
14Pn

2Gn1v0
2GnD .

~37!

In Fig. 6, we show the energy diffusion ofK56 and s
51/p for classical and semiquantal cases. The suppres
of classical diffusion is very obvious.

C. Transition from enhancement to suppression

We have seen so far that enhancement may happen a
smallK regime, and suppression at the largeK regime. Now
we would like to discuss the transition from enhancemen
suppression by changing the strength of the external po

FIG. 4. Time behavior ofln for the trajectory shown in Fig. 3.
The large decrement ofln in the semiquantal case demonstrates
strong suppression of classical diffusion.

FIG. 5. Time evolution of the effective external potentialKeff

for the orbit shown in Fig. 3.

the
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tial for fixed quantum fluctuations. Here we want to sho
that there exists a threshold value ofKc distinguishing en-
hancement from suppression.

To this end, we need to take an appropriate ensem
average over many trajectories in phase space. Howe
since the classical phase space of the KHO model is
bounded, it is impossible to do such an average over
whole phase space. This makes numerical works very d
cult. After many numerical experiments, we find a comp
mise, namely, we take the average over a disk centere
origin with radiusp. We spread 15315 initial points uni-
formly distributed inside this area. In classical case, we c
culate the Lyapunov exponent for each trajectory after4

kicks, and plot the averaged value denoted as^lcl& in Fig. 7.
This averaged value is in analogy to the Kolmogorov entro
in a bounded system. However, strictly speaking, this qu
tity cannot be called Kolmogorov entropy. Nevertheless, t
parameter captures more or less chaoticity of the underly
system. In the case of semiquantal dynamics, since we h
4D extended phase space, we always have two pos

FIG. 6. Energy diffusion atK56 for an irrational frequency
ratio s51/p for classical and semiquantal cases. The ensem
averaging is taken over 104 initial points which are uniformly dis-
tributed in an area of the disk centered at~0,0! with a radius ofp in
the phase space. The diffusion coefficient in the semiquantal ca
obviously much smaller than that of the classical case, which in
cates a strong suppression of classical chaos.

FIG. 7. Transition from enhancement to suppression. The a
aged Lyanpunov exponent vs the external potentialK for classical
and semiquantal cases with\50.1 and 1. The average is taken ov
15315 points uniformly distributed inside a disk of radiusp cen-
terd at (0,0). Heres51/p.
le
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s
g
ve
veLyapunov exponents. We add these two values, and de
the result aŝlsq&. It is plotted in Fig. 7 in comparison with
the classical result.

From Fig. 7 we can draw the following conclusions:~1!
There exists a certain threshold value ofKc . Before this
point, ^lsq&.^lcl&, which means that the degree of chaos
enhanced; after this point,^lsq&,^lcl&, chaos is suppressed
This critical valueKc changes with\. ~2! At the region of
K@Kc , ^lsq& fluctuates around a certain value. It does n
change withK. ~3! The enhancement and suppression
pends largely on\.

The results discussed in this section are restricted to
irrational frequency ratio. One might ask whether our co
clusion also applies to the rational frequency ratio. It is w
known that the KHO model is a degenerate system out of
KAM theorem. In classical phase space, there exists a s
diffusion along the stochastic web for any small value
perturbation. Our numerical results also show enhancem
and suppression. We give one example of rational freque
ratios s51/4 andK56 in Fig. 8 for suppression. The cor
responding Lyapunov exponent is shown in Fig. 9.

le

is
i-

r-

FIG. 8. Demonstration of suppression for a rationals51/4 fre-
quency ratio andK56. ~a! Classical phase space.~b! Semiquantal
(qsq,psq) with \51.
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Finally, we would like to say a few words about the initi
conditions and parity of the external potential. We have p
formed a wide range of numerical investigations, and fou
that the above discussed qualitative and quantitative con
sions are independent of the selection of the initial condit
and the parity of the external potential. However, the se
tion of the initial condition must be physically meaningfu
as we discussed in Sec. II.

Before concluding this section, we would like to discu
the connection of suppression to the dynamical localizat
In fact, this is a challenge to the squeezed state approac
this subtle phenomenon. We argued that the dynamica
calization observed in a kicked rotator is due to a supp
sion of the chaos discussed above. In fact, in the limit
case ofv050, the KHO model@Eq. ~22!# is reduced to the
kicked rotator model, in which chaotic diffusion is com
pletely suppressed by the quantum fluctuations and resul
dynamical localization, a well established fact observed
merically by Casatiet al. @15# almost 20 years ago, and con
firmed recently by experiment@17#. This was nicely illus-
trated by Zhang and Lee@4# with the squeezed stat
approach.

IV. DIFFUSION AND LOCALIZATION

In Sec. III we showed how quantum fluctuations enhan
and suppress chaos. This fact will definitely affect diffusi
behavior. For instance, in the limiting case, when the s
pression becomes dominant, localization is expected to h
pen. In this section we shall give a detailed study of this.
particular, we concentrate on the largeK regime. This is the
most difficult region in pure quantum computation. As w
shall see, the squeezed state approach not only provide
easy way to do numerical calculations but also makes it p
sible to do some analytical estimations.

The energyEn of the kicked harmonic oscillator in th
squeezed state approximation@Eq. ~37!# can be written as
two parts:

En5En
c1En

f . ~38!

En
c contains the first two terms in Eq.~37!, which is due to

the motion of the centroid of a wave packet. They mimic t
effect of classical diffusion~ECD!. En

f includes the last three
terms in Eq.~37!, and is attributed to the effects of quantu

FIG. 9. The Lyapunov exponent for the trajectory shown in F
8.
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fluctuations~EQF!. These two kinds of effects are the ma
ingredients of the diffusion process in the squeezed state
namics.

The ratios is an important quantity, as we shall see soo
We takes, the golden mean valuesg5(A521)/2, and its
continued-fraction expansionr /s: 2

3 , 3
5 , 5

8 , . . . as examples.r
and s are generated by the Fibonacci sequence defined
F051, F151, andFn5Fn221Fn21 for n.1. Without loss
of generality, in all calculations, we keep parameters\51,
K56, k051, andv051, and the initial point is chosen a
(0,0,0.5,0), which corresponds to the ground state of unp
turbed quantum harmonic oscillator.

A. Numerical results

Figures 10 and 11 and 12 and 13 show our numer
results of energy diffusion of

V~q!5H K cos~k0q!

K sin~k0q!
~39!

for even and odd parity, respectively. Now we discuss th
two cases separately.

.
FIG. 10. Evolution of the energy with time~in units of kicks! for

the case of an even potential with a rational frequency ratio. Nu
bers in the plot indicate the frequency ratio. The case of 1/1 co
cides with that of 1/2. Note that the curves have slope 2 asymp
cally, and a transient dynamical localization phenomenon shows

FIG. 11. Same as Fig. 10, but for an irrational frequency ra
s5(A521)/2. The localization is obvious.
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Even potential: In this case, for all rational frequencie
the energy will finally go quadratically with time, i.e.,En
;n2. As shown in Fig. 10, the slope equals 2 asymptotica
in the double logarithmic plot. However, for the cases
5r /s with relatively largerr ands, the diffusion starts only
after a certain time. Before this time the energy diffusion
localized. The transient time depends on the frequency
tios, and is approximately of the order of (s2sg)21. We
call this transient region atransient dynamical localization
region.

For the irrational case, dynamical localization occurs,
clearly demonstrated in Fig. 11. This significant phenome
has been observed and investigated in various quantum
tems in past few years.

It is worth pointing out that for two trivial cases, i.e.,s
5 1

1 and 1
2 , our squeezed state results given here agreecom-

pletelywith the quantum analytical results of Ref.@20# which
has been the only existing analytical results of the quan
diffusion of this model up to now. This demonstrates t
usefulness of the squeezed state approach. Moreover, b
ing the squeezed state approach, we have also recovere
quantum results obtained numerically by Borgonovi and R
buzzini @21#. For more details, see Sec. V.

Odd potential: In this case, quadratic law is observed on
in the case of rational frequency ratioss5r /s with odd s.
For other situations the energy diffuses linearly with tim
approximately; see Figs. 12 and 13.

FIG. 12. Same as Fig. 10, but for the case of odd potential.
dashed line with slope 1 is drawn to guide the eye.

FIG. 13. Same as Fig. 11 but for the case of odd potential.
dashed line with slope 1 is drawn to guide the eye.
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B. Analytical estimates

The above numerical results can be understood by ana
ing evolution equations~29!. In fact, we can analytically
derive the energy diffusion by studying system~29!. Starting
from Eqs.~29!, we find that when the external perturbation
absent, the two degrees of freedom~DOF’s! (p,q) and
(G,P) are decoupled, and each undergoes free motion
terms of action-angle variable, the Hamiltonian of the fr
motions can be expressed as Eq.~A5!. From this formula, we
have already seen thatboth free motions of the two DOF’s
aredegenerate. It is this degeneracy which makes resonan
between the two frequencies possible in phase space. Co
quently, the squeezed state dynamical behavior of the kic
harmonic oscillator is quite different from that of the kicke
rotator@4#. That is, the motions of the centroid and the flu
tuations of the wave packet behave like an oscillator w
fixed frequenciesv0 and 2v0, respectively.

However, when kicks are added, the two degree of fr
dom becomes coupled, and energy may start to diffuse.
convenient to express the evolution of system in terms
action-angle variables. From Eqs.~A4! and ~A5! one can
readily obtain four-dimensional maps

I n115I n2KeffQ8~k0A2I n /v0 sin fn!k0A2I n /v0 cosfn ,

fn115fn1v0T

1KeffQ8~k0A2I n /v0 sin fn!k0 /A2I nv0 sin fn ,
~40!

Jn115Jn1Keff

\

4
k0

2A~4Jn11!221

3sin unQ~k0A2I n /v0 sin fn!,

un115un12v0T2Keffk
2\S 12

4Jn11

A~4Jn11!221
cosunD

3Q~k0A2I n /v0 sin fn!.

With this 4D map, we are able to perform an analytical e
timate of the energy diffusion. We shall treat it at two d
ferent limiting cases.

Classical diffusion effect„\50…

In the classical limit case,\50 andEn
f 50, and the effect

of classical diffusion becomes dominant. Therefore,
change of energy during one kick is

DEn
c5k0KQ8~k0qn!~pn cosv0T2qnv0 sin v0T!

1 1
2 k0

2K2Q82~k0qn!. ~41!

For K@1, the orbit can be supposed to be approximat
ergodic. After ensemble averaging over variablesp and q,
the first two terms vanish approximately; thus we obtain l
ear energy diffusion

En
c;^DEn

c&n' 1
4 k0

2K2n. ~42!

Note that the average of the first two terms ofDEn
c , though

is much smaller than the last term for largeK, is nevertheless

e

e
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not exactly zero. This results in some oscillations ofEn
around the linearity~see Figs. 12 and 13!.

Effect of quantum fluctuations

For the second limit case, suppose a wave packet s
from (q,p,G,P)5(0,0,0.5,0) with an even potential, an
the center of the wave packet keeps fixed; thusEn

c[0. The
energy diffusion is caused purely by the effects of the qu
tum fluctuations. In this case we shall analyze the diffus
process for two different frequency ratios, i.e., rational a
irrational. For the rational frequency ratio, let us take t
simple case ofs5 2

3 as an example. During a time of 3T,
there are three kicks acting on the harmonic oscillator. Si
the frequency of fluctuation is 2v0, (G,P) evolves four pe-
riods. Note that the effective amplitude of a kick acting
the wave packet isKeff rather thanK. Among these three
kicks, only that one at a relative smallG affect the free
motion of the oscillator significantly. We call this kick th
effectivekick; the effects from other two kicks can be n
glected due to a very largeG, and consequently a very sma
Keff . At the time when the nexteffectivekick is in action,G
is approximately the same because of the resonance; see
14. Therefore, the increment ofP is almost constant, which
means thatP3n'n. Thus, from Eq.~37!, we obtain

En'n2, ~43!

which gives rise to the quadratic law observed in Figs.
and 12.

If s is an irrational number, a very interesting thing w
happen. From Eq.~A3! we know that the angular variabl
when a kick is added is

un52pns1u0~mod2p!. ~44!

This is nothing but a pseudorandom number generator, i
cating that the jump ofP may happen in upper (P.0) and
lower (P,0) parts with the same probability, and thus t
increment of energy in the upper part will be canceled out
the decrease in the lower part. This leads to the localiza

FIG. 14. Evolution (G,P) plot for K56 ands52/3.
rts

-
n
d

e

ig.

0

i-

y
n

phenomenon observed in Fig. 11. This localization mec
nism, resorting to a pseudorandom number generator,
minds us what happens in the kicked rotator, where the
calization is related to Anderson’s localization for a quantu
particle propagating in a one-dimensional lattice in the pr
ence of a static-random potential@16#. Our results imply that
it might also be possible to construct a connection betw
the kicked harmonic oscillator and Anderson’s problem
the framework of the squeezed state approximation. T
mechanism discussed can also explain the transient dyn
cal localization that occurs in the case of the rational f
quency ratio, as shown in Fig. 10. Since, during the timt
<(s2sg)21, a rational number behaves just like
pseudoirrational number, a transient localization pheno
enon occurs.

General case

As to the general case of system~29!, both the ECD and
EQF may coexist. To illustrate this, we consider the case
s5r /s, wherer and s are coprimed integers. Supposes is
odd. As we have explained above, between twoeffective
kicks, (q,p) and (G,P) evolve freely. Thus the angle vari
ables of (q,p) at the two successiveeffectivekicks aref and
f12pr , respectively, and that of (G,P) are u and
u14pr . From Eqs.~A5! and~29!, we find that, in this case
the increment ofDp and DP have the same sign, whic
means that both the ECD and EQF are excited, which
independent of the potential parity. Because the diffus
due to the EQF is;t2, which is much faster than that of th
ECD (;t), thus asymptoticallyt2 diffusion shows up, as
shown in Fig. 12. However, ifs is even, there is one addi
tional effective kick between the above mentioned tw
namely, thes/2th kick, at which the angle variable of (G,P)
is u12pr , while that of (q,p) is f1pr . Thus, for the even
potential case, the changes ofP due to the two consecutive
effectivekicks have the same sign, which implies that t
EQF is excited andt2 diffusion will show up. For the odd
potential case, the changes ofP due to the two consecutive
effective kicks have opposite sign, the EQF is thus su
pressed, and we obtain the linear diffusion seen in Fig. 1

For the irrationals case, the EQF is suppressed and
ECD becomes dominant. If (p,q) happens to be a fixed poin
in the (p,q) plane, as is the case of Fig. 11, localizatio
occurs. This is the reason for the different diffusion beha
iors of irrational s in Figs. 11 and 13 for even and od
external potentials, respectively. Please note that (p,q)
5(0,0) are the expectation values of all the eigenstates of
harmonic oscillator; thus the localization we observed in F
11 is not restricted to the case of the ground state, as
discussed up to now, but is very general.

C. Transition from localization to diffusion

The results discussed above focused on diffusion at v
large perturbation; in this case the underlying classical s
tem is completely chaotic. As a further example we wou
like to demonstrate a very interesting and important pheno
enon in quantum mechanics, i.e., thetunneling effect. We
start a wave packet from point~0,7.5! in the classical phase
space (q,p). Here we haves5 1

5 and V(q)5K cosq with
K50.5. The wave packet has parametersG05 1

2 and P0
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50 according to the minimal uncertainty principle. It is
Gaussian wave packet. The classical phase space is sho
Fig. 15~a!. We see that the starting point lies inside a sta
island. Classically, a trajectory that starts from this point w
never be able to escape. However, in the quantum case
situation becomes very different. We expect that if the wid
of the wave packet is much smaller than the size of t
stable island, the wave packet will be confined by this sta
island, and thus lead to localization. However, if the wa
packet becomes wider than the size of the stable islan
will spread out. Here we demonstrate this quantum phen
enon by the squeezed state approach. In Figs. 15~b!–15~d!,
we plot the energy evolution for different Planck constant\,
which corresponds to different widths of the initial wav
packet. At\51 and 2, we observed a localization pheno
enon as in other quantum systems. The energy oscill
around a certain value. When we increase\ further to \
55 a transition from localization to delocalization occu
which is shown in Fig. 15~d!.

V. COMPARISON WITH QUANTUM RESULTS

To give the reader a clear picture about the accuracy
the squeezed state approach, we would like to compare
results with those obtained from pure quantum computat
However, as mentioned above, since diffusion occurs in
whole unbounded phase space and cannot be reduced to
tion on a cylinder like the case of a kicked rotator, a pu
quantum~numerical! investigation is very difficult, in par-
ticular, in the largeK regime. Nevertheless, with a larg
amount of CPU time, one would be able to obtain so

FIG. 15. Transition from localization to delocalization of a wa
packet driving by the quantum fluctuations. The wave packet s
ing from a stable island (q0 ,p0)5(0,7.5).s51/5, v051, andK
50.5. ~a! Classical phase space.~b!–~d! Semiquantal energy diffu-
sion. ~b! \51. ~c! \52. ~d! \55.
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results in the smallK regime for short time evolution. This is
why there are only limited available quantum results in t
regime. We will compare them with our squeezed state
sults here.

First, let us look at the results obtained in Ref.@20#, al-
ready shown in Fig. 10. As for the case of 1/1 and 1/2, o
squeezed state results agree completely with the quan
one of Ref.@20#. In this case both squeezed state and p
quantal analyses predictt2 growth of the energy. We should
mention that it was conjectured in Ref.@20# that, for the
general case of 1/q, the energy growth should be less thant2.
From our squeezed state analysis we concluded that ther
only three different diffusions:t2, t and localization. There-
fore, our squeezed state analysis also agrees with Ref.@20#’s
prediction.

Now we turn to the results obtained by Borgonovi a
Rebuzzini@21#. Since the time unit given in their pictures
not clear, we are not able to make any quantitative comp
son with our squeezed state results. Therefore, we perfor
quantum calculations by using our own program~see Appen-
dix B!. All the system parameters are kept the same as
used by Borgonovi and Rebuzzini. The results are given
Figs. 16 and 17. These pictures correspond to different
fusion behaviors. In Fig. 16, at2 diffusion is obtained (t is in
units of kicks!; the squeezed state approach also gives ris
a t2 diffusive behavior, although there is a difference in pre
actor. In Fig. 17, both the quantum and squeezed state re
show localization around approximately the same ener
Please compare these two pictures with Figs. 1 and 8
Borgonovi and Rebuzzini@21#, respectively.

Our quantum computation technique~Appendix B! is dif-
ferent from that used in Ref.@20#. For a self-consistent tes
we have used the same parameter as that of Fig. 2 in
@20#, and computed the energy diffusion with our metho
We found that our results agree those of Ref.@20# in every
detail.

As already emphasized, because of the unbounded p
space, the quantum computation is very time consum
even for small perturbation. For instance, about ten d
CPU time ~IBM RISC System/6000 42T, with 192 Mbyte

t-

FIG. 16. Comparison of semiquantal~dashed line! and quantum
~solid line! diffusion for s5

1
4 , v052/p, v158p, K50.5, and\

51. The trajectory starts from (q0 ,p0)5(3.15,0). The semiquanta
trajectory has the same (q0 ,p0) and (G0 ,P0)5(1/2v0,0). Please
compare it with Fig. 1 in Ref.@21#.
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RAM! has been spent for Fig. 16, and 20 days CPU time
Fig. 17.

VI. CONCLUSIONS AND DISCUSSIONS

Applying the squeezed state approach to the kicked qu
tum harmonic oscillator, we illustrate how the quantum flu
tuations affect the classical dynamics. We have shown
chaoticity can be enhanced as well as suppressed by
quantum fluctuations. A transition from enhancement to s
pression is observed when we change the strength of
kicks.

Moreover, with this squeezed state approach, we are
to investigate the energy diffusion. Three different ene
diffusions have been observed for the kicked quantum h
monic oscillator, namely, localization, linear diffusion, an
quadratic diffusion. The localization is due to strong suppr
sion.

Though it is a kind of approximation, the squeezed st

FIG. 17. Comparison of semiquantal~top! and quantum~bot-
tom! diffusion for s5(A521)/2, v051, K51, and \51. The
trajectory starts from (q0 ,p0)5(15,0). The semiquantal trajector
has the same (q0 ,p0) and (G0 ,P0)5(1/2v0,0). Please compare i
with Fig. 8 in Ref.@21#.
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can mimic many true quantum behaviors such as those d
onstrated in this paper. Moreover, there are examples sh
ing that the squeezed state approach gives rise to bette
sults than the semiclassical method. However, under wh
condition or how far the squeezed state approach can
beyond the semiclassical method is still an open problem
deserves further numerical as well as theoretical study.

Finally, we would like to remark on the quantization of
quantum system whose classical counterpart is chaotic. A
well known, this is a tough problem which has attracted t
mendous attention in last two decades. Among many oth
Gutzwiller’s trace formula might be the most plausible o
@27#. However, this approach encountered difficulty of dive
gence, although many important contributions have b
made to overcome this difficulty. We believe that th
squeezed state approach might be an alternative way tha
contribute to this. Recent successful application of t
method by Pattanayak and Schieve@11# to calculate eigenen
ergies of a chaotic system sheds light on this direction.
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APPENDIX A: QUANTIZATION OF THE HARMONIC
OSCILLATOR BY THE SQUEEZED STATE APPROACH

In this appendix, we would like to demonstrate how t
squeezed state works when applied to a simple quantum
tem, a harmonic oscillator, which is the KHO system with
zero external potential. The harmonic oscillator is a sim
but very important model in quantum mechanics. It is
integrable system, and its eigenenergies as well as eigenf
tions can be obtained analytically. Therefore, this mode
very suitable for testing approximate methods such as
WKB method and others.

It is well known that the WKB approximation can give u
exact eigenenergies for this integrable system. Howeve
cannot yield exact eigenfunctions, in particular, for the lo
lying eigenstates. It gives only the envelope of the wa
function in the semiclassical limit\→0. In this appendix,
we shall demonstrate that when applying the squeezed
approach to the harmonic oscillator model, one can ob
the energy levels precisely as well as the eigenfunctions

The harmonic oscillator has the Hamiltonian operator

Ĥ5
p̂2

2
1

v0
2q̂2

2
. ~A1!

Applying the squeezed state approach to this system, one
easily obtain

H5
p2

2
1

v0
2q2

2
1

\

2S 1

4G
14P2G1v0

2GD . ~A2!

This Hamiltonian can be expressed in terms of action-an
variables



et
ua
i.e
in
d

a

n
,

t

o

r

sa
he
ul
ex
e
e
B

.,
p-

zed
tion

nt.

ical
l

y’s
dic
ase
ical
over

Fur-
ent

nt
ing

etri-

d

g

e
ion,

PRE 58 1755SQUEEZED STATE DYNAMICS OF KICKED QUANTUM SYSTEMS
H5voI 12v0~J1\ 1
4 !, ~A3!

where

I 5
1

2p R p dq, J5
1

2p R Pd~\G!. ~A4!

The transformations between (q,p), (G,P) and (I ,f), (J,u)
have the following forms:

q5A2I /vo sin f,

p5A2Ivo cosf,
~A5!

G5
1

v0
F S 2J1

1

2D2A2J~2J11! cosuG ,

P5

v0

2
A2J~2J11! sin u

~2J1 1
2 !2A2J~2J11! cosu

.

From Eq.~A5! one can see that the motion ofbothdegrees of
freedom aredegenerate, namely,]Ho /]I is independent ofI
and ]H f /]J independent ofJ. Furthermore, (G,P) are de-
coupled from (q,p). Thus the centroid of the wave pack
goes exactly along the classical trajectory. While the fluct
tions in momentum and position are time independent,
the width of the wave packet stays constant. From the m
mal uncertainty principle for the initial condition mentione
in Sec. II, we haveG51/2v0 and P50. Therefore, the
wave packet along the periodic orbit always keeps its form
a coherent state.

The time evolution of both (q,p) and (G,P) are periodic
with periodT0(52p/v0) andT0/2, respectively. So we ca
apply the EBK quantization to the extended phase space

I 5n\, J5m\, n,m50,1,2, . . . , ~A6!

SubstitutingI andJ into Eq. ~A3! and keeping in mind tha
G51/2v0 and P50, and thus m50, we obtain the
squeezed state eigenenergy,

En5\v0~n1 1
2 !. ~A7!

This is exactly the eigenenergy of the harmonic oscillat
Here the zero point energy12 \v0 comes into the formula in
a very natural and straightforward way. This is quite diffe
ent from the WKB method. In the WKB method,1

2 \v0
comes from the Maslov phase correction which is neces
because of the singularity of the wave function. In t
squeezed state approach, since we do not have any sing
ties, the Maslov-Morse correction is incorporated by the
tended variablesG and P. Furthermore, the energy of th
system is in the form of the expectation value of the und
lying Hamiltonian operator, whereas in the usual WK
-
.,
i-

s

r.

-

ry

ari-
-

r-

method, the energy is taken to be the classical form, i.eE
5Hcl . This is one of the reasons that people call this a
proach thesemiquantum approach.

Let us now construct the eigenfunction by the squee
state approach. We see that when the trial wave func
uC(t)& is transformed to

uC̃~ t !&5expS il~ t !

\ D uC~ t !&, ~A8!

the derived variational equations of motion remain invaria
SubstitutinguC̃(t)& into the Schro¨dinger equation, we can
obtain the equation determiningl(t),

l~ t !5E
0

t

dt8^C~ t8!u ih
]

]t8
2ĤuC~ t8!&5lG1lD .

~A9!

The second part of the integral corresponds to the dynam
phase. We denote itlD . The first term is the geometrica
phase noted aslG , which is

lG5 1
2 E

0

t

~pq̇2qṗ!dt1\E
0

t

ṖG dt. ~A10!

Since the motions of (p,q) and (G,P) are periodic, this
geometrical phase is the Aharanov-Anandan form of Berr
phase. During the evolution, each point along the perio
orbit acquires a phase factor. However, the dynamical ph
does not change during the evolution; only the geometr
phase matters. So the eigenfunction is a weighted sum
points of the commensurate periodic orbit@10#. The weight
factor at each point is an appropriate geometrical phase.
thermore, as mentioned above, according to the requirem
of the initial condition, the initial wave packet is a cohere
wave packet, and it does not change its form when cycl
along the periodic orbit. Substituting expressions forp andq
in Eq. ~A5! into Eq. ~A10!, and keeping in mind thatP50,
we can easily evaluate the integral and obtain the geom
cal phase at timet, which is

lG~ t !5n\f, ~A11!

where f5p/22h. Thus the eigenfunction for the boun
state having the eigenenergyEn in Eq. ~A7! is

cE
0

2p

ei ~lG /\!ua&df5CE
0

2p

e2 inhua&dh, ~A12!

whereua& is the coherent state,f is the angle in the (v0q,p)
plane, andC is the normalization constant. This is nothin
but the number eigenstateun& given in Eq.~7! except for the
prefactor. This constantC can be easily calculated by th
normalization. Therefore, in the coordinate representat
the wave function is
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Cn~q!5CE
0

2p

dh e2 inh^qua&. ~A13!

This is the exact wave function of the harmonic oscillato

APPENDIX B: PROCEDURE OF QUANTUM
COMPUTATION

In this appendix, we describe our procedure of quant
computation. Since the Hamiltonian is periodic in time, t
Floquet theory can be applied. The time evolution can
reduced to evolution of the eigenstate over one driving
riod,

uC~ t1T!&5Û~T!uC~ t !&, ~B1!

where

Û~T!5Û freeÛkick5expS 2 i
Ĥ0T

\
D expS 2 i

V~ q̂!

\
D

~B2!

is the Floquet operator.
To simulate quantum diffusion in this degenerate syst

~22!, the Fourier spectral method is employed. The time
terval of free propagation is divided into many slices, ea
having a width ofD. For each slice the evolution operator
factored into a product of kinetic and potential propaga
arranged in a symmetric way, so that a full potential step
sandwiched between two half kinetic steps, namely,
n,

s

s

e
-

-
h

r
is

expS 2 i
Ĥ0D

\
D 5expS 2 i

p̂2D

4\
D expS 2 i

v0
2q̂2D

2\
D

3expS 2 i
p̂2D

4\
D 1O~D3!. ~B3!

This technique of symmetrically splitting the kinetic prop
gator reduces the error introduced by neglecting the com
tator between the kinetic and potential operators. The erro
reduced toO(D3) from O(D2) in a nonsymmetric splitting.
The kinetic propagation is carried out in momentum spa
since in this space the time evolution is simplified as mu
plication. The potential step is performed in coordinate sp
for the same reason. The kick step, performed once per
riod, is also done in coordinate space. A fast Fourier tra
form routine is used to transform wave function betwe
these two spaces.

Since the KHO model is a degenerate system, a w
packet may diffuse rapidly, even to infinity in both coord
nate and momentum space. The average energy of the w
packet may reach a rather high value during the diffusi
This amplifies the error caused by the approximation mad
Eq. ~B3!. Therefore, the self-adaptative procedure is used
adjust the time slice in Eq.~B3! in each period to make sur
that the width of the time slice is much smaller than t
inverse energy. Second, both coordinate and momen
spaces should be large enough. So a large number~32 768!
of Fourier components are used in our computations.
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